From 1 - 2 / 2
  • The (JGOFS)-[http://ijgofs.whoi.edu/]), 2, focus on small scale biogeochemical processes, in particular at a daily scale, 3, study the influence of nitrogen, phosphorus and iron on oceanic fertility and 4, conduct a calibration/validation operation for the SeaWIFS (Sea-viewing Wide Field-of-View Sensor) color sensor. To reach these objectives, the studied areas, as well as the cruise plan, were designed : To investigate different trophic regimes, to investigate systems characterized by different degrees of limitation in nitrogen and phosphorus and to study stable ("steady state") systems for a sufficiently long period. The cruise track encompassed a variety of trophic systems ranging from eutrophic conditions associated to the Moroccan upwelling to the typical ultra-oligotrophic conditions of the eastern Mediterranean sea during summer stratification. Two main types of stations were occupied : 9 short (4-hour) stations. These sites were occupied around the solar noon and were essentially designed to conduct objectives 1 (JGOFS process studies) and 4 (SeaWIFS validation/calibration) 3 "long" (5-day) stations, where all four objectives were investigated with a particular emphasis on objectives 2 (processes at a daily scale) and 3 (nutrient resources and oceanic fertility). Between each station, continuous multiparametric (hydrological, optical, biological and chemical) surface acquisitions were performed. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Global phytoplankton production monthly maps for 2017 are produced using an artificial neural network to perform a generalized nonlinear regression of PP on several predictive variables, including latitude, longitude, day length, MLD, SST, PBopt computed according to Behrenfeld and Falkowski (1997), PAR and CHL(0 m). More details about this model can be found in Scardi (2001). Behrenfeld, M. J., Falkowski, P. G. (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology & Oceanography, 42(1), 1–20. Scardi, M. (2001), Advances in neural network modeling of phytoplankton primary production, Ecological Modelling, 146, 33–45.